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ABSTRACT The brain can hold the eyes still because it
stores a memory of eye position. The brain’s memory of
horizontal eye position appears to be represented by persistent
neural activity in a network known as the neural integrator,
which is localized in the brainstem and cerebellum. Existing
experimental data are reinterpreted as evidence for an ‘‘at-
tractor hypothesis’’ that the persistent patterns of activity
observed in this network form an attractive line of fixed points
in its state space. Line attractor dynamics can be produced in
linear or nonlinear neural networks by learning mechanisms
that precisely tune positive feedback.

The brain moves the eyes with quick saccadic movements.
Between saccades, it holds the eyes still, a capability that
depends on a ‘‘memory’’ of angular position of the eyes. A
person who has lost the ability to store this memory can hold
his or her eyes still at only a single null position. After saccades
to other positions, the eyes drift back toward the null position,
in a disorder known as gaze-evoked nystagmus (1). Localiza-
tion studies suggest that the memory of eye position is stored
in a neural network that extends over several areas in the
brainstem and cerebellum (2–19).
When the eyes are still, the pattern of neural activity in the

memory network is constant in time. For every position of the
eyes, the pattern of activity is different, and can persist much
longer than the intrinsic persistence time of a single neuron’s
activity (20–22). Therefore, the long persistence of network
activity appears to be a collective effect that depends on the
interactions between the neurons of the memory network.
Based on existing experimental data, it will be argued that

the memory of eye position is stored in a neural network with
an approximate line attractor dynamics. If synaptic strengths
and other parameters are precisely tuned by learning mecha-
nisms, a linear network (23–26) can exactly realize a line
attractor dynamics, and a nonlinear network (27, 28) can
achieve a good approximation.

The Memory of Eye Position

The following discussion is restricted to horizontal eye posi-
tion, and neglects the other two rotational degrees of freedom
of the eye (29). Horizontal eye position is chiefly controlled by
two extraocular muscles, the lateral andmedial recti. When the
eye is still, it rests at the mechanical equilibrium point at which
the net torque due to the muscles and passive orbital tissues
vanishes. The location of this equilibrium point is determined
by motor neuron drive, which controls the length-tension
relationships of the muscles (30).
The lateral and medial recti are innervated by motor neurons

in the abducens and oculomotor nuclei, respectively. When the
eyes are still, the firing rates of these neurons are constant in time
and are approximately linearly related to eye position (31, 32).
Although this suggests that the motor nuclei store the memory of
eye position, other evidence is to the contrary. If the oculomotor
nerve is electrically stimulated, the eye quickly returns to its

prestimulation position after a transient deflection (33). This
stimulation presumably activates neurons in the oculomotor
nucleus antidromically, yet evidently does not alter the memory
of eye position. Patients with partial damage to the connections
between the abducens and oculomotor nuclei suffer from weak-
ness of themedial rectuswithout loss of the ability to hold the eyes
still (1). The most plausible explanation of these empirical
observations is that the motor nuclei ‘‘read-out’’ a memory of eye
position that is stored elsewhere.
Many premotor neurons in the medial vestibular nucleus

(MVN) and prepositus hypoglossi (PH) carry an eye position
signal (2–7) and project to the abducens nucleus. Stimulation
of the MVN or PH causes persistent changes in eye position
(9–11). Electrolytic lesion (12, 13) or pharmacological inacti-
vation (9, 14–19) of these areas causes the disorder gaze-
evoked nystagmus. Such experimental results indicate that
these premotor neurons are part of the network that stores the
memory of eye position.
Feedback connections from the abducens and oculomotor

nuclei to the PH and MVN are few (34, 35). Since the eyes can
be held still in the dark (36), the contribution of visual
feedback in the light seems minor. Proprioceptive feedback
also seems unimportant, as there is no evidence of a stretch
reflex in the extraocular muscles (37).
To summarize, experiments suggest that neurons carrying an

eye position signal can be divided into two populations. One
population stores thememory of eye position, and the other reads
it out. The memory network includes neurons in the MVN and
PH. The read-out network consists of motor neurons in the
abducens andoculomotor nuclei. Thememory network drives the
read-out network, which in turn drives the extraocular muscles.
This chain of activation is approximately feedforward.

State Space Analysis

The preceding account of the memory of eye position can be
translated into the language of state space analysis. The firing
rates of neurons are denoted by vi, where the index i runs from
1 to N, the number of neurons in the network.
When the eyes are still, the firing rates are constant and are

related to eye position E by:

vi 5 vi
0 1 kiE. [1]

The intercept vi
0 is the firing rate at central gaze E5 0, and the

slope ki is called the ‘‘position sensitivity.’’ The intercept and
slope vary from neuron to neuron.
The state of the network is described by the firing rates vi of its

neurons. The ‘‘state space’’ of the network is the multidimen-
sional space for which the coordinates are the firing rates vi. If the
network is placed at a generic point in state space, its state evolves
in time, tracing out a trajectory. Different initial conditions lead
to different trajectories, which can be depicted in a ‘‘state space
portrait.’’ States of the form (Eq. 1), observed when the eyes are
still, are special points in state space. Because they do not change
with time, they are called ‘‘fixed points’’ of the dynamics.
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Abbreviations: MVN, medial vestibular nucleus; PH, prepositus hy-
poglossi.
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The state space portrait of the memory network has many
fixed points, one for each eye position E. As shown in Fig. 1A,
these fixed points lie on a line in state space. This ‘‘line of fixed
points’’ is parametrized by the rate-position equations (Eq. 1).
The vector vi

0 is a point on the line. To this vector, multiples of
the direction vector ki can be added to construct the other
points on the line. Eye position E is coded in the displacement
along the line from vi

0.
The visual and vestibular inputs to the memory network do

not normally vary with static eye position, provided that the
head is stationary. As a result, a single state space portrait
suffices to describe the dynamics of the memory network when
the eyes are still, as depicted in Fig. 1A.
In contrast, the read-out network has a different state space

portrait for each static eye position, because it is driven by an

eye position signal from thememory network. Each state space
portrait has a ‘‘single fixed point’’ with firing rates vi specified
by Eq. 1 for a single eye position E, as shown in Fig. 1B. The
inputs from the memory network modulate the state space
portrait of the read-out network, determining the location of
the fixed point on the line (Eq. 1).

Perturbations of State

A saccade is a step-like change from one static eye position to
another. For a neuron that satisfies the rate-position relationship
(Eq. 1), there is a corresponding change from one steady rate of
firing to another, but the change does not have the simple time
dependence of a step. Some neurons in the memory network
burst at high rates or pause in their firing for tens of milliseconds
during the saccade. Immediately after the saccade, the firing rates
of all the neurons relax slowly over hundreds of milliseconds to
new steady levels (2, 3, 5, 8). These ‘‘slide-step’’ postsaccadic
responses are the aftermath of the brief pulse input supplied by
saccadic command neurons during the saccade (29).
In the language of state space analysis, the pulse input from

saccadic command neurons suddenly perturbs the state of the
memory network away from the line of fixed points. The ensuing
‘‘slide-step’’ response corresponds to the flow of the network to
a new fixed point on the line. The network is kicked in various
directions in state space to produce a variety of saccades, yet it
always returns to the line. Since all trajectories in state space
appear to flow to the line, it is called an ‘‘attractor’’ of the
dynamics. It is helpful to visualize this dynamics as a descent on
an energy landscape. Then the line attractor is the line of minima
at the bottom of a trough with a curved cross-section (see Fig.
1A). Each trajectory flows down the walls of the trough to a point
on the bottom. The pulse of input from saccadic command
neurons pushes the memory network up the walls of the trough.
When the pulse is over, the network relaxes back to the bottom,
to a minimum different from the initial one. This new minimum
corresponds to a new static eye position. The time scale of the
relaxation, which is reflected in the ‘‘slide’’ component of re-
sponse, is determined by the steepness of the walls of the trough.
To see the dynamics of the read-out network about its single

fixed point, its state must be perturbed without an accompanying
perturbation of the state of the memory network. This does not
happen during saccades, because the command neurons project
to both networks. However, such a perturbation can be effected
artificially by oculomotor nerve stimulation, as was described
earlier (33). This perturbs the state of the oculomotor nucleus via
antidromic activation, without perturbing the state of thememory
network. As discussed earlier, the eye quickly returns to its
prestimulation position. This is indirect evidence that the fixed
point is attractive, since it follows from the rate-position rela-
tionship (Eq. 1) that the oculomotor nucleus also returns to its
prestimulation state. A ‘‘point attractor’’ can be visualized as the
minimumof a bowl-shaped energy landscape, as shown inFig. 1B.
Between saccades, eye position is not exactly constant when

measured in darkness, without visual feedback. The eye does a
slow random walk (36), which suggests that the state of the
memory network does a random walk along the line attractor.
The trough visualization makes clear that there is no restoring
force opposing perturbations of state along a line attractor. Thus,
a memory stored using a line attractor dynamics is susceptible to
corruption by noise. Various sources of noise, such as the random
fluctuations in the tonic input from vestibular afferents, could be
causing the random walk behavior.

Perturbations of Dynamics

Measurements of eye position in the dark reveal systematic drift,
in addition to the random fluctuations described above. The eyes
of most normal human subjects slowly drift over a 20–40 s time
scale toward the center of the oculomotor range (36). This could

FIG. 1. State space portraits and energy landscapes for the memory
and read-out networks. The coordinates of the state space are the firing
rates of the neurons in the network. Only two of the dimensions of state
space are depicted in the plane, with the height of the energy landscape
as the third dimension. The dynamical trajectories in state space corre-
spond to trajectories down the energy landscape. (A)All trajectories in the
state space of the memory network flow toward a line attractor (thick
line). The corresponding trajectories on the energy landscape flow down
the walls of a trough, toward a line of minimum energy at the bottom. (B)
All trajectories in the state space of the read-out network flow toward a
point attractor. Input to the network controls the location of the point
attractor, moving it along the dashed line. A point attractor can be
visualized as the minimum of a bowl-shaped energy landscape.
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be interpreted as evidence for a state space portrait with a single
point attractor, as shown in Fig. 2A. In other subjects, there is no
null position, and drift is unidirectional, implying a state space
portrait with no fixed points at all, as shown in Fig. 2B.
Both of these cases are best described as ‘‘approximations’’

to the line attractor dynamics of Fig. 1A. There is a trajectory
along which motion is slow, and toward which relaxation is fast.
On short time scales, this slow trajectory looks like a ‘‘line of
fixed points.’’ Only on long time scales can the drift along the
trajectory be observed.
Perturbations of the dynamics of the memory network can

result in much faster eye position drift than is seen in normal
subjects. For example, sedatives, anticonvulsants, or alcohol
can produce gaze-evoked nystagmus, which is characterized by
fast centripetal drift (1). This disorder is presumably due to a
memory network with a single point attractor, as in Fig. 2A, but
with a longitudinal relaxation time much shorter than the
normal tens of seconds. As mentioned earlier, electrolytic
lesions of the MVN or PH also produce gaze-evoked nystag-
mus (12, 13). Vestibular nystagmus (fast unidirectional drift)
is often caused by unilateral damage to the vestibular nerve or
semicircular canals. Pharmacological inactivation of the MVN
or PH can produce centripetal or unidirectional ocular drift (9,
14–19). Some patients with cerebellar disease suffer from
centrifugal ocular drift away from a null position, suggesting a
memory state space with a saddle point, as shown in Fig. 2C.
Perturbations of dynamics can be visualized as changes in the

trough energy landscape. Tilting the trough causes unidirectional
drift along its bottom. If the bottom of the trough is uneven, the
continuous line of minima breaks up into discrete local minima.
Thus, generic perturbations, even very small ones, destroy a line
attractor. This sensitivity to infinitesimal perturbations of dynam-
ics is a property known as ‘‘structural instability.’’ It suggests that
the realization of line attractor dynamics in neural networks
requires precise tuning by learning mechanisms.
After about 1 hr of exposure to visual-vestibular conflict

stimuli, human subjects developmarked centripetal or centrifugal
eye position drift (39). Such deterioration in the dynamics of the
memory network is likely due to the same learning mechanisms
that normally keep the dynamics well-tuned when presented with
natural stimuli. These experiments provide evidence that the time
scale of learning (minutes) is much longer than the ‘‘computa-
tional’’ time scale of eye movements (seconds).

Positive Feedback

It was noted above that feedback projections from the read-out
to the memory network are sparse or nonexistent. However,
there are many feedback loops within the memory network
itself. The bilateral MVN and PH nuclei are fully connected by
internuclear projections (34, 35). In addition, neurons in the
MVN and PH have recurrent collaterals that appear to me-
diate intranuclear feedback loops. In contrast, motor neurons
generally possess no axon collaterals (40).
The feedback loops within the memory network appear

important to its function, judging from the fact that damage to
the commissural connections of the MVN and PH causes
gaze-evoked nystagmus (41, 42). It has been proposed that the
role of feedback is to lengthen the persistence time of the
network beyond the intrinsic persistence time of a single
neuron (23, 28, 43). Positive feedback can oppose the tendency
of a pattern of neural activity to decay. If the feedback is tuned
to exactly balance the decay, then the activity neither increases
nor decreases, but persists without change.
The positive feedback scenario can be expressed in the lan-

guage of state space analysis. The state space portrait of a group
of noninteracting neurons has a single point attractor. If external
input perturbs the system, then it relaxes back to the attractor on
a time scale determined by the persistence time of an isolated
neuron. However, positive feedback in a network of neurons can

lengthen the relaxation time in one of the directions. The
feedback can be tuned so that the relaxation time for this direction
becomes infinite, producing a line attractor.

FIG. 2. State space portraits of the memory network. Biological
realizations of line attractor dynamics are inevitably imperfect, and are
accompanied by various types of systematic eye position drift. In all cases,
the trajectory along the oblique axis is very slow, and looks like a line of
fixed points on short time scales. (A) Point attractor, corresponding to
centripetal ocular drift to a null position. (B) No fixed points, corre-
sponding to unidirectional ocular drift and no null position. (C) Saddle
point, corresponding to centrifugal ocular drift. (D) Several point attrac-
tors spaced along a line, corresponding to multiple null positions.
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The positive feedback scenario assumes a short neuronal
persistence time. But the dynamics of ion channels and second
messenger pathways can have persistence times of hundreds of
milliseconds or even many seconds. Therefore, it is important to
consider a scenario in which the persistence time of the memory
network is a biophysical time scale (8). State space analysis makes
clear the problems with this scenario. Suppose that the intrinsic
properties of each neuron endow it with an infinite persistence
time, so that it can fire forever at whatever rate to which it is set.
Every point in the state space of a noninteracting ensemble of
such neurons is a fixed point, which is inconsistent with the
experimentally observed line attractor. Consequently, there must
be interactions between the neurons that produce transverse
relaxation to the line attractor through negative feedback. But this
negative feedback scenario is inconsistent with the lesion and
inactivation experiments. If it were true, eliminating feedback
would increase persistence in the transverse directions, instead of
decreasing persistence in the longitudinal direction.

Linear Network Models

How can positive feedback in a neural network give rise to a
line attractor? This question can be investigated at varying
levels of detail. Only the simplest class of models is considered
here. The total synaptic current ui in neuron i is modeled as a
linear superposition of contributions from both recurrent and
feedforward connections (44):

ts
dui
dt

1 ui 5 O
j51

N

Tijvj 1 hi. [2]

The postsynaptic current in neuron i due to neuron j depends
on the presynaptic firing rate vj and the synaptic strength Tij.
The feedforward term hi is constant in time when the head is
still, containing only the tonic input from the vestibular
afferents. The soma transforms the synaptic current ui into a
firing rate vi, according to some rate-current relationship.
According to measurements in MVN slices (20–22), this
relationship is roughly linear above threshold:

vi < gi ui 1 v i
p. [3]

Even when the current ui 5 0, there is some spontaneous
pacemaker activity v ip (45).
For simplicity, all synaptic currents in Eq. 2 are modeled with

a single time scale ts 5 150 ms. This important model parameter
specifies the persistence time intrinsic to a single neuron. The
value ts 5 150 ms is consistent with measurements of excitatory
synaptic currents in MVN neurons (46). The job of the recurrent
feedback connections Tij is to boost the time constant of the
network of N neurons to a value much longer than ts.
Fixed-point equations for the rates vi can be obtained from

Eq. 2 by setting the time derivatives duiydt equal to zero and
eliminating ui using Eq. 3, yielding:

vi 5 O
j51

N

Wij vj 1 fi. [4]

The synaptic weight matrix Wij 5 giTij is the number of action
potentials produced in neuron i per action potential in neuron
j. The ‘‘force’’ fi 5 gihi 1 v ip on neuron i is due to synaptic
current hi from feedforward inputs and the pacemaker rate v ip,
and is the rate at which the neuron would fire if there were no
feedback from other neurons.
In general, this set of N linear equations in the N unknowns vi

has a unique solution. In other words, the dynamics has a single
fixed point, as in Fig. 2 A and C. However, for special choices of
Wij and fi, the linear equations can have an infinite number of
solutions that lie on a line. These special choices are defined by

two conditions. First, the weight matrix Wij must have a single
unity eigenvalue. This is the condition of tuned positive feedback,
and produces a direction in state space along which the energy
function has no curvature, as in the trough in Fig. 1A. Second, the
force vector fi must be orthogonal to the left eigenvector with
unity eigenvalue. This condition ensures that spontaneous activ-
ity v ip and tonic afferent input hi do not push the network along
the line attractor. Its effect on the energy function is to make the
bottom of the trough perfectly level.
These two conditions for a line of fixed points involve precise

tuning. This tuning must be performed by a learning rule (25,
26) that adjusts Tij and other quantities, such as gi, v ip, and hi.
If the tuning is perfect, the network time constant is infinite.
A more realistic outcome of learning is good but imperfect
tuning, producing a slow trajectory that looks like a line of
fixed points on short time scales, as in Fig. 2A–C. Motion along
the slow trajectory follows an exponential time course with a
large but finite network time constant.
The eigenvectors of the weight matrix with unity eigenvalue

have interpretations in terms of single-unit properties. For
example, the components of the right eigenvector are propor-
tional to the position sensitivities ki of the neurons, defined in
the rate-position relationship (Eq. 1).
Besides the unity eigenvalue, there are N 2 1 other eigenval-

ues. The real parts of these eigenvalues must be less than unity to
make the line of fixed points attractive. Furthermore, the gap
separating theN2 1 eigenvalues from the unity eigenvalue must
be large. A large gap produces relaxation to the line attractor
within time of order ts, as observed experimentally in the
postsaccadic responses of neurons in the memory network.
Cannon et al. (23) first proposed the use of linear dynamical

equations for modeling the memory network. They interpreted
the microscopic time scale ts in Eq. 2 as a membrane time
constant of 5 ms, in contrast to the interpretation given here
of ts as a 150-ms synaptic time constant. They constructed a
linear network with a long time constant by tuning an eigen-
value of the weight matrix to unity with an accuracy of 0.025%
(the ratio of membrane time constant 5 ms to network time
constant 20 s). An obvious criticism of their model was that this
degree of precision in tuning seemed biologically implausible.
In response, they argued that networks of size N become more
robust to mistuning as N increases, since the positive feedback
becomes distributed over many pathways. This argument was
problematic for two reasons.
First of all, although Cannon et al. (23) were correct that large

networks can be robust to loss of a single neuron, they greatly
underestimated the size required. The robustness of their 32-
neuron network depended on a feature of the model that is not
consistent with the biological data. Namely, several eigenvalues
were close to unity, so that there were several directions in state
space with long persistence times. This is incompatible with the
experimentally observed relaxation to a one-dimensional line of
fixed points. To be biologically relevant, a linear network model
must have a large gap separating a single unity eigenvalue from
the other eigenvalues. In such a network, the sensitivity of the
unity eigenvalue to loss of a single neuron is at best on the order
of 1yN, as will be explained in more detail elsewhere. By this
estimate, roughly 4000 neurons, not 32, are required to keep the
eigenvalue tuned to within 0.025%. Accordingly, Arnold and
Robinson (25) found their later models to be unrobust to loss of
a single neuron, since these models did have large gaps.
Second, the robustness of the Cannon et al. (23) model to

random fluctuations in synaptic strengths depended on bio-
logically implausible assumptions about correlations between
the fluctuations. If the fluctuations are uncorrelated, then
their 32-neuron network becomes much less robust. In addi-
tion, there are many biologically plausible perturbations of
dynamics that have more severe effects than those considered
by Cannon et al. (23). For example, one can easily imagine a
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physiological perturbation that enhances the strengths of all
excitatory synapses. A large network is no more robust to this
type of perturbation than a small network.
In the description of the neural dynamics (Eqs. 2 and 3), it

was argued on biophysical grounds that ts is most plausibly
interpreted as a synaptic time scale on the order of 150 ms,
rather than as a membrane time constant on the order of 5 ms.
The same conclusion can be reached on the grounds of
robustness. Without the biologically inconsistent features of
the Cannon et al. (23) model, it is difficult for a linear network
to achieve the 0.025% tolerance required by the 5-ms mem-
brane time constant. Based on a 150-ms synaptic time scale, a
20-s network time constant can be achieved with only 0.75%
tolerance in the tuning of the unity eigenvalue. This is still an
impressive degree of tuning, but should be within the reach of
biologically plausible learning mechanisms.
This issue could be settled by single-unit recording after

lesion or inactivation of a large fraction of the memory
network. Disruption of most of the feedback loops in the
memory network should make the network time constant fall
to a value close to the microscopic time constant ts. Single-unit
recording will reveal whether this time scale is closer to 5 ms,
as proposed by Cannon et al. (23), or closer to 150 ms, as
proposed here. Previous lesion and inactivation experiments
have been inconclusive with regard to this issue, because they
relied solely on measurements of eye position, which cannot
resolve a network time constant shorter than the viscoelastic
time constant of the oculomotor plant (150–200 ms).

Nonlinear Network Models

The linear rate-current relationship (Eq. 3) is only an approx-
imation. Slightly sublinear behavior is evident in the intracel-
lular measurements, especially at high firing rates (20–22).
Such deviation from linearity, although small, cannot be
neglected in the analysis of a system that depends on precise
tuning. Neither can the threshold nonlinearity in Eq. 3 be
neglected, because many neurons in the memory network fall
below threshold near the center of the oculomotor range (2, 4).
If the rate-current relationship (Eq. 3) takes some nonlinear

form vi 5 g(ui), the fixed-point equations for ui are given by:

ui 5 O
j51

N

Tij g~uj! 1 hi. [5]

Generally, there is no choice of Tij and hi for which these
equations have an infinite number of solutions. This means
that a line attractor cannot be perfectly realized, but only
approximated. One class of approximations can be found by
constraining Tij to be a matrix of rank one, Tij 5 jih j. Since the
matrix-vector product (jTijvj is then a multiple of ji, it can be
shown from Eq. 2 that all dynamical trajectories flow to a line
ui5mji1 hi that is parametrized bym. The fullN-dimensional
dynamics is thus reduced to a one-dimensional dynamics in the
m variable, which codes for eye position. A least-squares
optimization can be used to tune hj so that the mean square of
dmydt is minimized over a range of m. This produces an
approximate line attractor dynamics in which the drift velocity
dmydt along the line is very slow. The components of the vector
ji are proportional to the position sensitivities ki of the
neurons, as defined in Eq. 1. The rank-1 construction will be
explained in detail elsewhere, along with a biologically plau-
sible learning rule that gives rise to the rank-1 form and
performs the least-squares optimization with respect to hj.
Approximation of line attractor dynamics by a nonlinear net-

work can be qualitatively different than approximation by a linear
network. Linear network approximations can have no more than
a single fixed point, as shown in Fig. 2 A–C. Nonlinear network
approximations can have more than one fixed point, as shown in

Fig. 2D. Some evidence of multiple null positions after partial
inactivation of the memory network has been reported (47).
The line attractor dynamics used to store the memory of eye

position contrasts with the point attractor dynamics used in other
memory networks. In associative memory models (48, 49) and
digital memory circuits, the interactions Tij are chosen to produce
strong linear instabilities that are quenched by the nonlinear
function g. The state space portraits of these networks contain
discrete point attractors separated by high-energy barriers. The
states of these systems are resistant to corruption by noise, and
their essentially infinite persistence times do not depend on
precise tuning of parameters. Thus, strong nonlinearity can be
used to make memory networks that are very robust to pertur-
bations of state and dynamics. In contrast, the analog, graded
response of the rate-position relationship (Eq. 1) indicates that
the eye position memory network makes weaker use of nonlinear
computation. Instead, its robustness appears to be due to the
operation of nonlinear learning mechanisms.

Discussion

The rate-position relationship (Eq. 1) holds in both the
memory and read-out networks. In spite of this similarity in
neural coding, the two networks have qualitatively different
dynamics. The state space of the memory network contains a
line attractor. The state space of the read-out network contains
a point attractor, the location of which is controlled by input
from the memory network.
Point and line attractors can be distinguished by using

perturbations of state or dynamics. Perturbations of state can
be experimentally induced by electrical stimulation. They also
occur naturally when saccadic command neurons provide brief
pulses of input. A point attractor dynamics is stable to per-
turbations of state in any direction. A line attractor dynamics
is only stable to perturbations of state in the transverse
directions; those in the longitudinal direction are persistent.
Perturbations of dynamics can be caused by lesions, pharma-
cological agents, and many other changes in physiological
conditions. A point attractor dynamics is structurally stable,
meaning that small perturbations of the dynamics leave the
point attractor intact. In contrast, a line attractor is structurally
unstable. These issues of stability and structural stability are
readily visualized using energy landscapes.
The robustness of a line attractor dynamics is problematic. Its

state is corrupted by noise, and perturbations of dynamics shorten
its persistence time. The brain deals with this problem by using
adaptive mechanisms. Some patients who exhibit severe gaze-
holding disorders in the dark can hold their eyes still in the light
using visual feedback, demonstrating that sensory feedback can
compensate for mistuning in the memory network. On longer
time scales, there is behavioral evidence that learning mecha-
nisms tune the line attractor (39). These mechanisms presumably
operate by adjusting network parameters such as synaptic
strengths or spontaneous firing rates (25, 26).
The long persistence time of the memory network appears to

be due to tuned positive feedback (28, 43). If the persistence time
intrinsic to a single neuron is a 5-ms membrane time constant, as
assumedbyCannon et al. (23), the stringent demands onprecision
of tuning are biologically implausible. Instead, the intrinsic neural
persistence time is most likely a synaptic time scale, such as the
150-ms time constant of excitatory synaptic currents observed in
the memory network in vitro (46). When based on this longer
biophysical time scale, models of the memory network become
more robust to perturbations of dynamics, making the positive-
feedback hypothesis biologically plausible. The opposing hypoth-
esis is that the persistence time of the memory network is purely
a biophysical time scale, with little or no contribution from
collective interactions (8). This scenario is unlikely because it is
difficult to obtain rapid transverse relaxation to the line attractor
after saccades.
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A line attractor dynamics can be realized exactly by a
network of linear neurons (23–26). In the biologically relevant
case of nonlinear neurons, a line attractor dynamics can only
be approximated. This contrast between exact realization and
approximation does not have direct implications for biology,
since it exists only in the case of optimal tuning. Biologically
plausible learning mechanisms produce good but suboptimal
tuning, in which case both linear and nonlinear networks only
approximate line attractor dynamics. These approximations
can be qualitatively different. Linear approximations have one
fixed point, or none. Nonlinear approximations can have more
than one fixed point, as in Fig. 2D.
The term ‘‘memory network’’ emphasizes a very limited

aspect of its function. In the special case in which the head is
still, the feedforward inputs to the network are constant, and
the network is an autonomous dynamical system amenable to
state space analysis. The autonomous limit was emphasized in
this paper because it is easy to understand. During normal
behavior, the network receives time-varying vestibular and
visual input, and is a driven system rather than an autonomous
one. As discovered by Robinson (1), the network integrates
these velocity-coded inputs to stabilize eye position with
respect to the surrounding environment. Hence, the memory
network is more completely described as an ‘‘integrator.’’ The
integrator functions as a memory system only in the special
situation in which the head is stationary.
In this paper, the memory of horizontal eye position has been

treated as separate from that of the vertical and torsional degrees
of freedom. This was a simplification made for pedagogical
reasons, and may not be accurate. It is known that there are
neurons with firing rates that code for more than one degree of
freedom of the eye (7). The eyes were also treated as yoked
together, when in fact they are under independent control during
vergencemovements. Thus, a six-dimensional attractivemanifold
of fixed points may be a more accurate description of state space
structure than a one-dimensional line attractor. The dimension-
ality of this manifold reflects the number of degrees of ocular
freedom that must be controlled. The phenomenon of velocity
storage (1) has also been neglected here, and involves memory of
additional degrees of freedom.
Stimulated by his observations of ‘‘reflex after-discharge,’’

Lorente de Nó (43) formulated his theory of ‘‘closed ‘self-
reexciting’ chains’’ in the 1930s. Because the three-neuron
vestibuloocular reflex arc was not sufficient to explain persis-
tent neural activity, he was led to the idea of the ‘‘reverberating
circuit.’’ The line attractor concept provides a qualitative
description of the dynamics of the reverberating circuit that
keeps the eyes still, and may also be relevant to the under-
standing of postural control in other motor systems.
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